(a) 34
(b) 32
(c) 30
(d) 24
(a) 34
Let parts be x and (54-x). Then 10x+22(54−x)=780. Solving this equation gives x=34. The parts are 34 and 20.
(a) x(2x+3)=x2+1
(b) x(x+1)+8=(x+2)(x−2)
(c) (x+2)3=x3−4
(d) (x−2)2+1=2x−3
(b) x(x+1)+8=(x+2)(x−2)
 Simplifying option (b) gives x2+x+8=x2−4⟹x+12=0,
which is a linear equation because the x2 terms cancel out. 
(a) 5n+2
(b) 5n+3
(c) 5n−5
(d) 5n−3
(d) 5n−3
Here, first term a=7 and common difference d=5. The (n−1)th term is an−1=a+((n−1)−1)d=7+(n−2)5=5n−3.
(a) 7.5 cm
(b) 3 cm
(c) 4.5 cm
(d) 6 cm
(c) 4.5 cm
 By the Basic Proportionality Theorem, CD/DA=CE/EB. So,
3/DA=4/6⟹DA=(3×6)/4=4.5 cm. 
(a) 63
(b) 35
(c) 53
(d) 36
(c) 53
 Using the determinant formula for area, Area = 0.5∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣=0.5∣50+8+48∣=53
sq. units. 
This website uses cookies.